Çankaya University
Department of Mathematics 2020-2021 Spring Semester

MATH 410 - Special Functions
 Second Midterm Examination

1) Find $P_{7}(x)$ (Legendre polynomial of order 7) using any method you wish.
2) Show that

$$
\int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}, \quad n=1,2,3, \ldots
$$

where $P_{n}(x)$ is the Legendre polynomial of order n.
3) Using the generating function, show that

$$
H_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{n!}, \quad n=0,1,2,3, \ldots
$$

where $H_{2 n}(x)$ is the Hermite polynomial of order $2 n$.
4) Show that

$$
x L_{n}^{\prime}(x)=n L_{n}(x)-n L_{n-1}(x), \quad n=1,2,3, \ldots
$$

where $L_{n}(x)$ is the Laguerre polynomial of order n.
Hint: Use generating function.
5) Using the explicit series form, show that

$$
L_{n}^{\prime \prime}(0)=\frac{1}{2} n(n-1)
$$

where $L_{n}(x)$ is the Laguerre polynomial of order n.

ANSWERS

1) We know that $P_{0}=1$ and $P_{1}=x$ using the ODE. Let's use the recurrence relation

$$
\begin{aligned}
& P_{n+1}=\frac{1}{n+1}\left((2 n+1) x P_{n}-n P_{n-1}\right) \\
& P_{2}=\frac{1}{2}\left(3 x P_{1}-P_{0}\right) \\
&=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}=\frac{1}{3}\left(5 x P_{2}-2 P_{1}\right) \\
&=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}=\frac{1}{4}\left(7 x P_{3}-3 P_{2}\right) \\
&=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}=\frac{1}{5}\left(9 x P_{4}-4 P_{3}\right) \\
&=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{7}=\frac{1}{7}\left(13 x P_{6}-6 P_{5}\right) \\
&=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right) \\
&=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right) \\
&\left.P_{6}-5 P_{4}\right) \\
&=5
\end{aligned}
$$

2) Let's rewrite the recurrence relation as:

$$
\begin{aligned}
& x P_{n}=\frac{1}{2 n+1}\left((n+1) P_{n+1}-n P_{n-1}\right) \\
& \int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\int_{-1}^{1} \frac{1}{2 n+1}\left((n+1) P_{n+1}+n P_{n-1}\right) P_{n-1} d x \\
& =\frac{n}{2 n+1} \int_{-1}^{1} P_{n-1}^{2} d x \\
& =\frac{n}{2 n+1} \frac{2}{2 n-1} \\
& =\frac{2 n}{4 n^{2}-1}
\end{aligned}
$$

3) The generating function for Hermite Polynomials:

$$
e^{-t^{2}+2 x t}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}
$$

If $x=0$ we obtain:

$$
\begin{aligned}
& e^{-t^{2}}=\sum_{n=0}^{\infty} H_{n}(0) \frac{t^{n}}{n!} \\
& \sum_{k=0}^{\infty} \frac{\left(-t^{2}\right)^{k}}{k!}=\sum_{n=0}^{\infty} H_{n}(0) \frac{t^{n}}{n!}
\end{aligned}
$$

Clearly, $H_{n}(0)=0$ if n is odd. Let's rewrite the right hand side using this:

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{2 k}}{k!}=\sum_{n=0}^{\infty} H_{2 n}(0) \frac{t^{2 n}}{(2 n)!}
$$

In this equation, we can see that $n=k$ therefore:

$$
H_{2 n}(0)=\frac{(-1)^{n}(2 n)!}{n!}
$$

4) The generating function for Laguerre Polynomials:

$$
\frac{1}{1-t} e^{\frac{-x t}{1-t}}=\sum_{n=0}^{\infty} L_{n}(x) t^{n}
$$

If we differentiate with respect to t, after some operations, we obtain

$$
(n+1) L_{n+1}=(2 n+1-x) L_{n}-n L_{n-1}
$$

The derivative of this with respect to x gives:

$$
\begin{aligned}
& (n+1) L_{n+1}^{\prime}=(2 n+1-x) L_{n}^{\prime}-L_{n}-n L_{n-1}^{\prime} \\
& (n+1)\left(L_{n+1}^{\prime}-L_{n}^{\prime}\right)=n\left(L_{n}^{\prime}-L_{n-1}^{\prime}\right)-x L_{n}^{\prime}-L_{n}
\end{aligned}
$$

If we differentiate the generating function with respect to x, after some operations, we obtain

$$
L_{n+1}^{\prime}=L_{n}^{\prime}-L_{n}
$$

Using the last two equations, we obtain

$$
x L_{n}^{\prime}=n L_{n}-n L_{n-1}
$$

5) The explicit series form for Laguerre polynomials is:

$$
\begin{aligned}
& L_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{k!} x^{k}=\sum_{k=0}^{n} \frac{(-1)^{k} n!}{(n-k)!(k!)^{2}} x^{k} \\
& L_{n}^{\prime}(x)=\sum_{k=1}^{n} \frac{(-1)^{k} n!}{(n-k)!(k!)^{2}} k x^{k-1} \\
& L_{n}^{\prime \prime}(x)=\sum_{k=2}^{n} \frac{(-1)^{k} n!}{(n-k)!(k!)^{2}} k(k-1) x^{k-2}
\end{aligned}
$$

$L_{n}^{\prime \prime}(0)$ is the coefficient $k=2$:

$$
\begin{aligned}
& L_{n}^{\prime \prime}(0)=\frac{(-1)^{2} n!}{(n-2)!(2!)^{2}} 2 \\
& L_{n}^{\prime \prime}(0)=\frac{n(n-1)}{2}
\end{aligned}
$$

